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THE TORSION OF A GROWING CYLINDER BY A RIGID STAMP" 

A.V. MANZHIROV 

The contact problem of the torsion of a viscoelastic ageing, growing 
cylinder by a rigid stamp is considered. Dual series equations 
reflecting the mathematical content of the problem of different stages 
of the growing process are derived and investigated. The results of a 
numerical analysis and the singularities of the qualitative behaviour of 
the fundamental characteristics are discussed. 

1. Fonmhztion and derivation of dual series equations of the contact problem. We will 
assume that a fairly long circular cylinder of length l and radius b, (the ratio of 1 to b, 
is fairly large) is fabricated from an ageing viscoelastic material at zero time. One of the 
cylinder endfaces is clamped at a non-deformable base while a rigid stamp of circular planform 
with a flat bottom of radius u< b, is coupled coaxially to the other. At a time 70a torque 
M 0) starts to act on the stamp, rotating it through an angle a (0. The cylinder side 
surface is stress-free. 

At a time rr substance influx to the cylinder side surface starts. The new incremental 
elements are not stressed and the time of their fabrication coincides with the time of initial 
body fabrication. Adhesion of each element with non-deformable base from the clamped endface 
side occurs at the time of attachment. 

b, 

t 

Fig.1 

The law of cylinder growth is given completely by the 
function b 0) that characterizes the change in its radius 
with time. Naturally b (q) = b,. 

The growing ceases at a time z2. At that time the 
cylinder radius takes the value b,(b(z,) = b,), and its side 
surface is free of any action even at t 27,. The contact 
growing problem is studied within the framework of a quasi- 
static approximation in the absence of body forces /l, 2/ 
(Fig.1). 

The cylinder is considered to be relatively long during 
the growth process and after its cessation (the ratios lib(t) 
and l/b, are fairly large). 

Consider the fundamental relations of the problem in 
the time interval tE [~~,z~l. We have for the initial visco- 
elastic ageing cylinder 

ar 
+ 

ar,* 2r 
t7t L=l.l (V.o--0) r (1.1) 

z=O, O<,<r<a: z+:a((t)r; z=O, p<r<bb,: r,;=O 

r = b,, O<z<l: T,q= 0; z=l, O<r<b,: u,=O 

1 
%4 = T 

i 
+-+j, Ecz=++(8= +-[h+ (h)Tlj 

(I = 2G (t) (I + F (q,, t)) e, (I - S (q,, t)) = (I T F (~g, t))-’ 

5 (t,,, t) f (t) = j; f(t) K, (t, T) do, K, (t, z) = G (r) & [ -& + 0 (t. T)] 
To 

where e and e are the stress and strain tensors with non-zero components z,~,z~~ and arrp, apl 
respectively, u is the displacement vector with a single non-zero component ZL~, K,(t,z),o(t,~) 
and G(t) is the creep kernel, the measure of creep, and the modulus of elastically-instan- 
taneous deformation under pure shear. The arguments r, s, t in cases when this does notcompli- 
cat@ reading the formulas will be omitted. 

We set 

a0 = (I - S (ro, t)) oG-” 
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(1.2) 
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and we act on the expression from (1.1) containing e and its components with the operator 

(I - s (70. t)) * Then taking (1.2) into account, we obtain the following boundary-value problem 

ar;, a?;, 2T0 
7 i -a;-+ 

'"=(J (Y.o'=O) (1.3) r 

z = 0, 0 Q r < a: UC@ = OL (t) r; z = 0, a < r < b,: tlC10 -= 0 

r = b,, 0 < z < 1: a,$ = 0; z = 1, 0 < r < b,: uv .= 0 

e = II’? [Vu + (Vu)T], (r” -= 2e 

On the basis of (1.3) we determine that the displacement urg satisfies the equation 

(1.4) 

Following /3/ we take the solution of (1.4) in the form (see /4-7/J 

up (r, z, t) = Zbo-‘d, (t) r (1 - zl-‘) + 

2 6,-‘d, (t) J, (r6,) sh 16, (I - zjl sh-’ (S,L) 

(1.5) 

where d, (t) (k = 0, . . ., 00) are unknown functions of time, 6, (n =I, .., CO) are undeter- 
mined constants, and Jv (4 is the Bessel function of order Y. Here and henceforth the 
summation is from n=l to n = 00. 

We note that expression (1.5) for the displacement ug satisfies the boundary condition 
from (1.3) on the clamped endface of the cylinder for z = 1 and enables us to write the 
tensor components of the operator stresses o0 in the form (see (1.1) and (1.3)) 

rrpro (r, z, t) = -bo-‘d, (t) r - (1.6) 

z d,, (t) J, {r&,) ch 16, (1 - z)) ah-' (i&l) 

r,$ (r, z, t) = -xd,, (t) J, (r6,) sh 16, (1 - z)] SK’ (&,l) 

Utilizing the boundary condition from (1.13) on the cylinder side surface (r = bO) and 
(1.6), we find a set of constants 6,. Indeed, by equating the expression for G to zero 
for r= b, we obtain that 6, = h,b,-‘, where I.?, are roots of the equation J, @.A = 0. 

Finally, satisfying the boundary conditions for z = 0, we will have the following dual 
series equations to seek the sequence of functions d, (t) 

&'d, (t) r +x b,h,-ld, (t) J, (b,-%,r) = a (t) r (0 < r < a) (l.i) 
b,-‘d, (t) r + sd, (t) J,(b,-‘h,r)cth (bo-l&l) = 0 (a < r < b) 

Since h, > h, = 3.8317 and lb,-’ = x0 > 1, then coth (bo-‘h,l) can be set equal to one with 
a high degree of accuracy and (1.7) can be investigated in the form /3/ 

urc (r, 0. t) = xedo (t) r + 2 b&,-l d, (t) J, (b,-‘h,r) = a (t) r 

(0 < r Q a) 

(1.8) 

qz” (r. 0, t) = b,-Id, (t) r + xd, (t) J, (b,-l&r) = 0 (a Q r Q b,) 

The dual series Eqs.(1.8) describe the formulated contact problem in the interval tfZlLz,,, 
4, where the time itself occurs in it parametrically. We will now construct the solution 
of (1.8) below by first obtaining the resolving equations of the problem during continuous 
growth and after cessation of growth. We merely note that the true stresses are restored 
according to the zlcpo and %z" found from the formula 

u (r, z, t) = G (t) Id’ (r, z, t) + 5 u” (r, z, T) R, (t, 4 dd 
‘I. 

(1.9) 

where R,(t,7) is the resolvent of the kernel K,(~,T). 
Let t E lq, z,l. Then the initial-boundary-value problem for a growing cylinder being 

twisted by a stamp has the form /l, 2/ 

% 2r 
ar+ 

%z -j-+--==o (V.u=O) r (1.10) 
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where the dot denotes differentiation with respect to time, a* is the stress tensor given on 
the growth surface that characterizes the clearance of the growing elements ((I* = 0 when 
there is no clearance), T* (r) is the time of attachment of elements with coordinate r to 
the main cylinder, where T* (b(T))= 7. 

We write the inverse operator to (I $ F(r,(r), t)), as follows (h(r- b,) is the Heaviside 
function): 

(I - s ("0 (r). t)) f (1) = (I - s (z” (r), t)) f (t) -- [I - h (r - (1.11) 

bdl s (%? 71) f (t) 

s’(.C,,7,)f(t)=rS,f(T)K1(t,~)d~, z’(r) = TV j- h (r - b,) [z* (r) - ~~1 
T” 

Acting on the relationships from (1.10) with the operator (1.11) and taking account of 
the notation e0 = (I - S (z,, (r), t)) I&-’ we will have 

(1.12j 

z=o, O<T<U: t+=a(t)r; z==O, a,<r<b(t): qlo=O 

I‘ = b (t), 0 < 2 :< 1: z,q” = 0, Trlzo = 0 (0’ = co* = o*G-’ = 0), 

t = t* (r) 

z = 1, 0 < r < b (t): uQ = 0 
8’ = ‘/2 [Vu* + (Vu')T], a0 = 2e 

It is obviously sufficient to show that 

+ (I - S (~0 (r), ~))T,.~G-’ = (I - S (~0 (r),t)) 7 G-' aTrB 

for relations (1.12) to be valid. 
In fact (see (1.11)) 

where the second and third components on the right-hand side of this equality equal zero 
according to the conditions of the problem: % *=lJ and 5, = 0 for tEfT~,Tlj,r=bo,O~z<l 
(6 (r - b,) is the Dirac delta function). 

$G-’ (r* (r)) KI (t. T* (r)) + 6 (r - b,) SL (To, n) r,,G-1 

Now differentiating the equilibrium equation, the governing relationships, and the first, 
second, and fourth boundary conditions from (1.12) with respect to time and acting on the 
initial-boundary condition a0 =(I“* with the divergence operator, we obtain the following 
boundary-value problem 

ar,, a$ 2T0' 
ar +- az+ 

-.!!?-CO (V.oO.=O) 
r (1.13) 

z = 0, 0 < r < a: urn’ = a’ (t) r 

z = 0, a < r < b (t): z,,“’ = 0 

r = b (t), 0 < z Q I: qrpo’ = 0, t = T* (r) 

z = 1, 0 Q r < b (t): uqp’ = 0 

8’ = ‘is [T’u’ + (VU’)T], d = 28' 
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It is seen that the rate of displacement urn' satisfies the equation Due' =0 (see 

(1.4)) while the expression for ulp' and the rates of the operator stresses zrclri '* and '* %z 
can be written in the form 

uvp’ (r, z, t) = lb-’ (t) d,” (t) r (1 - zl-I) + zqn-l (t) d," (t)J, [rnn (t)l X 
sh Iql (t) (1 - z)l sh-' [qr, (t) 11 

(1.14) 

v,~" (r, z, t) = -b-’ (t) do0 (t) r - xd,” (t) J, [ql (t)l cl1 [n, (t) (I - 

z)l sh-' Inn (t) 21 

'srq 
0. (r, z, t) = -Zd,,' (t) J, [rn,, (t)l sh [qn (t) (1 - z)l sh-’ [rj,, (t) 21 

Here dbo (t) (k = 0, . . ., m) and nn (t) (n = 1, . . ., -) are sequences of functions to be 
determined. 

By satisfvinq the boundary conditions from (1.13). takino into account that Lb-' (t) > 1, _ _ 
we arrive at dual series equations for finding d," (tj - 

u,' (r, 0, t) = x (t) d," (t) T + 2 b (t) hn-‘dno (t) J, lb-* (t) h,rl = a’ (t) r 

(0 < r < a) 

(1.15) 

Q:’ (r, 0, t) = b-’ (t) d,O (t) r + Ed,” (t) J, lb-’ (t) h, rl = 0 

(a < r Q b (t)) 
q,, (t) = h,b-’ (t), x (t) = Zb-’ (t), TV < t < r, 

If the d,"(t) are found, meaning 8' and u' also, the stress tensor (7 and the 
placement vector u are established according to the formulas 

dis- 

(1.16) 

The boundary-value problem for a growing cylinder has the form (1.10) after the cessation 
of growth t>r2 =T* (b,) where only b (t) = b, and the usual boundary conditions 
specified on the cylinder surface. 

GQ = 0 is 
Just as before, it can be reduced to a boundary-value 

problem in the rates of displacement and operator stresses with a solution in the form (1.14) 
under the condition b (t) = b,. The resolving dual series equations retain the form (1.15) 
where b (t) = b,, x (t) = x1 = Zb,-‘, qln (t) = ‘I,, = h,b,-‘, t > ‘c,. After their solution, the stresses 

rro1 %i and the displacement uQ are determined by using (1.16). It should be noted that 
the dependence of (I" and u' on the time t is parametric. 

The condition of stamp equilibrium that holds in the whole time interval must be added 
to the dual series equations obtained 

M(t) = - 2n ir(p, t)p2dp, z(p> t) = r,,(p, 0, t) (1.17) 
0 

On the basis of (1.17) the following conditions can also be obtained 

M”(t) = (I - S (Q, t)) M (t) G-l (t) = - 2n i to (p, t) p* dp (q, -$ t < q) 
” 

a,;:, r) 
To 

a 

-2nSz”‘(p,t)p2 dp 
0 

dz + M (q,) w = 

Q>%) (1.19) 

which are more convenient for constructing the solution of the contact problem in a number of 

(1.18) 
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cases. 
The reasoning presented above is extended to the case T~~*#O. i.e., a growing cylinder 

with a certain clearance of the attached elements. For this modification of the problem, only 
the condition on the growth surface is altered in relations (1.13) 

Actually, quite natural conditions of no actions on the body surface to which the sub- 
stance influx will occur, and to the growthsurfaceitself during the growth process /2/ should 
be satisfied. 

2. Solution of the dual series equations of the contact problem. The resolving dual 
equations of the problem can be represented in three fundamental time intervals by the single 
relationships 

(2.1) 

;hz;w', ,set 5 = x,,, qr = d, (t) (k = 0, . . ., w), p (x) - zy (zb,, t), 9 = a (t), c = ab,-I, I = rb,-‘, for 
0, 1 I we have 

for t f3 IT,, x21 
6 = x (t), Tr = d," (t), + = a' (t), p (I) = TO’ (sb (t), t), c = ab-1 (t), z = rb-l (t), 

and unlike the preceding 5 =x1, b(t) = b, for t>%r. 
Let us construct the solution of (2.1) by following /8/ (see /5/ also). Let 

The series in the second equation of (2.1) is a Dini expansion /9/ of the function -p(z), 
whose coefficients (Pi (k = 0, . ., m=) are given by the formulas 

p (x) = [ & 1 g(E) (E2 - x2)-, dg ] h (c -x) 
* 

(2.2) 

~,=--/t=zp(“)dl=8SEg(E)d~ 
0 0 

(2.3) 

(P,,= - 2J;2(l.,i)~rp(r)J,(~~~)d2= 2J;‘(i,)~ g(E) sin(h,E)d~ 
0 

(n=l,...,co) o 

when (2.2) is taken into account. 
Substituting (2.3) into the first equation of (2.1) and using the technique from /0, lo- 

13/, we obtain a Fredholm integral equation of the second kind to determine the function g(x) 

&)+S’g(E)W.WE=+ (l,<s,<c) 
0 

where & (Y), 1, (Y) are Bessel functions of imaginary argument of order Y. 
The solution of (2.4) obviously yields the complete solution of the contact problem in 

question also. It can be found numerically /3/ or by using iteration methods /5, 14/. We 
consider here one method, proposed in /3/, for constructing the approximate solution of (2.4). 
We note that for 5210 the deviation of the approximate from the numerical solution does 
not exceed 8.5% for c = 0.7,7% for c = 0.6 and 1% for cQ 0.5. 

We will use the fact that the quantity 5 is fairly large and we will limit ourselves 
to the first term in the expression for the kernel k (~7 E) (see (2.4)) 

(2.5) 
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Then substituting g(z)= As into (2.5) and determining A, we will have by virtue of 

12.2) 
p (x) = -49 In + 16 (Zy, - 1) c3/31-’ z (c” - jcy/* (1 Q I < c) (2.6) 

The dependences of the opetator contact stresses and their rates on the angle of Stamp 
rotation can be written on the basis of (2.6) in the form (0 <r Q a) 

7” (r, t) = a (t) w (r, be) (%I Q t < %f 
z”’ (r, t) = a’ (t) W (r, b (t)) (7% < t < ~1 

7” (r, t) = u’ (t) W (r, b,) (t 9 72) 

W (r, 5) _: -_4/[n + 16 (Zig-1 - 1) a”~-V31. I” (de - ra)-“zl 

(2.7) 

(2.8) 
(2.9) 

For a given angle of stamp rotation z" (r, t), 9’ (r. t) are found at once from (2.71-(2.91 
and by using the relationships described earlier the contact stresses r (r, t) are restored. 
The moment acting on the stamp is calculated from (1.17). We note that for a(t)= con& the 
mutual influence of the initial cylinder and its newly forming unstressed part does not appear. 

On the basis of (1.9), (1.18) and (2.7) we will have for a given torque M(t) 

z (r, t) = 3M (1) (4na3)-‘r (a2 - rZ)-‘/z 

a (t) = B (b,) (I - S (zo, t)) M (t)iG (t) (7@ < i Q zl) 

B (j) = 3/(16~3) + (‘1 - E)/(Jx~~) 

(2.10) 

Using (1.161, (l-19), (2.8) and (2.9), we finally obtain the relationship (2.10) for the 
contact stresses for t> z,, and the following expressions for the angle of rotation 

a* (t) = M”‘ (t) B (b(t)), 

a’ (t) = M”’ (t) B (6,). a(t) = cs (q + 5 CC’ (T) & (t 2 q 
Tl 

It turns out that the growth of a cylinder during torsion of a stamp by a moment of 
forces has a slight influence on the contact stress distribution if the stamp and cylinder 
radii are not very close (specific ratios are given above). However, a substantial dependence 
of the angle of stamp rotation on the time from when the cylinder starts to grow and on the 
growth rate appears in this same case. 

3. &%ntericat example. We examine the contact problem in question by considering the 
cylinder to be fabricated from concrete with a modulus of elastically instantaneous shear 
strain G(t)= G= coast and a measure of creep under shear in the form /15, lb/ 

0 (t, T) = (Do + Fe-q (1 - ,-v@-Q) 

We will make a change of variables according to the formulas 

r* czz ra-1 , g+ = pa-‘, t* = &-1, I* = q-1, T* (9, t’) = t (r, t) G-1 

‘Tl’ = T,To“. T** = ~~~o-1. M’ (P) = M (t) G-'a-3, a* (t*) = a (t) 

@’ = PT,,, I’* = yr,, b,’ = boa-‘, b,’ = b,a-’ 

b’ (t*) = b (t) a-‘, I* =: la-‘, Do* = DOG, F’ = FG 

and omitting the asterisk in the notation, we give the following values of the functions and 
parameters: 

bo = 110.7, 1= 20i0.7. b (t) = b, (t i_ Q - 22,) (T* - 7,)~' 

b, = Zb,, M (t) = 1, D, = 0.251, F = 1.818 

6 = 0.31, y = 0.6, 70 = 10 days 

It is seen that during the time of growth the cylinder radius doubles. The growth rate 
is constant and is determined only by the times of the beginning and cessation of growth. The 
torque acting on the stamp does not change with time. Moreover, the ratio of the cylinder 
length to its radius is greater than or equal to 10 during the extent of the whole process, 
while the ratio of the stamp and cylinder radii does not exceed 0.7, i.e., formulas of the 
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approximate solution can be utilized. 
As regards the contact stress distribution, it is sufficient to refer to (2.10) to note 

that it (the distribution) is practically independent of the properties of the material and 
for a constant torque can be considered to be invariant (~(r, t) I 3r!(4n(l- r")"'l) with a suf- 

ficient degree of accuracy. 
The behaviour of the angle of stamp rotation as a function of the fundamental character- 

istics of the process of piecewise-continuous cylinder growth requires a more detailed analysis. 
The three lower curves in Fig.2 show the change in the angle of rotation a in a time t 

for a cylinder whose growth starts simultaneously with the 
application of the torque (TV= 1) for different growth rates 
0' (t): b’(1) = b&l (T - 10) 

the dash-dot li'ne 
is the solid line 0' (I) = b,/3 (7% = 4) is 

, and b. (L) = b, ($ = 2) is the dashed line. 
The times of the halts in growth are marked by the vertical 
solid lines. 

The three upper curves in Fig.2 correspond to dependences 
of the angle of stamp rotation on the time for different 
growth rates b' (t) for a cylinder loaded at the time 1 and 
starting to grow at the time TV= 2: b (t) = b&3 (TV = 10) the 
dash-dot line, and b’(l)= b,/2 (TV= 4) the dashed line. For 
comparison, the change in the angle of stamp rotation that 
twists a cylinder of fixed radius b, is shown by the solid 
line. The sections of the curves located between the vertical 
solid lines characterize the behaviour of the angle of stamp 
rotation in intervals of continuous cylinder growth. 

The graphs demonstrate the essential dependence of the 
angle of rotation a (t) on the growth rate and the time of 
the beginning of growth. Thus the limit value of the increment 
in the angle of stamp rotation A (CO) (A (t) = a (t) - cz (rO)) during 

, 6 slow cylinder growth can exceed the same value for rapid 
growth by a factor of 2.7. The characteristic time, starting 

Fig.2 
with which the influence of the process of piecewise-continuous 
growth of the contact interaction characteristics can be 
neglected exists for a constant torque. In the same case a 
strong dependence of the limit value of the angle of stamp 
rotation on the time interval between times of the beginning 
of loading and the beginning of growth appears. 

The author is grateful to N.Kh. Arutyunyan for suggesting the problem and for his interest. 
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AN INEQUALITY IN THE THEORY OF A SEMILINEAR ELASTIC BODY' 

V.A. MISYURA 

An inequality for a geometrically non-linear problems is obtained as an analogue of the 
Wager-Synge identity in linear elasticity theory on the basis of a representation of the 
elastic energy density of a semilinear elastic body. 

The convexity of the potential energy functional in geometrically linear problems of 
elasticity theory enabled a dual variational problem, the Castigliano principle, to be 
formulated. The fact that the lower bound of the direct functional I is associated with the 
lower bound of the dual by the relationship 

inf I = -inE J = sup (--J) (0.1) 

turns out to be remarkable here. 
The potential energy functional I is examined in a set of kinematically allowable dis- 

placement fields w, the dual J in a set of statically allowable stress fields (J. The property 
(0.1) of the dual problem enables the minims value of the direct functional 1(w) to be 
estimated as accurately as desired from below. But this would at once yield /If an estimate 
of the approximation w minimizing the element w0 in the norm Le 

II w - W‘llt*(Y1) <c (1 (w) - W (0.3) 

where d < I (w") is the lower limit of the minims value of the functional I, 6' is a constant, 
and V, is the domain occupied by the elastic body in the undeformed state. 

The estimate (0.2) can be reduced to the form /2/ 

Here ii is a statically allowable stress field, CT' is the kinematically allowable stress, 
and 0" is the true state of stress of the elastic body. 

The natural desire to extend these results to the case of geometrically non-linear 
problems of elasticity theory encounters a number of difficulties in principle. The first is 
associated with the fact that the potential energy functional in geometrically non-linear 
problems is not convex. In substance, this excludes the possiblity of constructing a dual 
functional for which condition (0.1) would be satisfied. It is thereby impossible to compute 
the lower bound of the potential energy functional as exactly as desired. The second dif- 
ficulty is that the relationship (0.2) is not valid in geometrically non-linear problems. And 
even in the case when the dual problem /4/ is constructed formally according to standard 
procedure /3/ and a lower bound of the minimum value of the direct functional is obtained, 
the connection between this estimate and the error of the approximate solution is not clear. 

An attempt is made below to obtain an inequality of the type (0.31 for a semilinear 
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